
IT700 MAIN FEATURES

- Low-cost powerline communication (PLC) modem and application solution in a single chip
- Incorporates Yitran's high performance Data Link Layer (DLL), Network Protocol (Y-Net) and extremely robust Physical Layer (PHY)
- Extended 8051 microcontroller with 256KB Flash for protocol stack and application
- **Protocol Controller Architecture** version: pre-programmed with communication stack
- **Open Solution Architecture** version: allows user to program application code together with the communication stack.
- Full home coverage even under adverse line conditions
- HomePlug[®] Command and Control ready
- Fully backward compatible with IT800 Series

APPLICATIONS

- Smart Grid Applications:
 - Automated Meter Reading (AMR)
 - Advanced Meter Management (AMM)
- Energy Management:
 - Smart Home & Building Automation
 - Home Appliance Control & Diagnostics
 - Security and Access Control
 - Environmental Control
- Commercial Applications:
 - Street Light Control
 - Vending Machine Control
 - Signage Control

June 2008

A

Copyright © 2008, YITRAN Technologies Ltd. www.yitran.com

001_IT700

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of YITRAN Technologies' products and disclaimers thereto appears at the end of this document. Other trademarks are property of their respective owners

1. Communication Layer Features

LAYER 1 (PHY)

- Patented DCSK modulation
- High immunity to signal fading, noise, impedance modulation and phase/ frequency distortions
- High in-phase and crossphase reliability
- Forward short-block soft decoding error correction mechanism and CRC-16
- Complies with FCC, ARIB and EN50065-1-CENELEC regulations
- FCC and ARIB bands bit rate:
 - 7.5Kbps Standard Mode (SM)
 - 5.0Kbps Robust Mode (RM)
 - 1.25Kbps Extremely Robust
- Mode (ERM) • CENELEC band bit rate:
- 2.5Kbps Robust Mode (RM)
- 0.625Kbps Extremely Robust Mode (ERM)

LAYER 2 (DLL)

- Up to 1023 logical networks and 2047 nodes per network
- Acknowledged and Unacknowledged data transmission services
- Re-transmission mechanism
- Automatic rate control
- Adaptive Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) channel access
- Fragmentation and reassembly to support full Ethernet packet transmission

LAYER 3 (NETWORK)

- Supports 1000 different, overlapping networks
- Supports 2000 nodes in each network
- Master-Slave and Peer-to-Peer Network Configurations
- Plug & Play Network Setup
- Automatic logical network creation
- Automatic node address allocation
- Automatic and adaptive Routing Service (Tree topology)
- Network Parameter Recovery
- Failure Detection
- Full security Suite including AES 128-bit encryption with 32 bit authentication

2. IT700 General Description

The IT700 is a highly integrated System-on-a-Chip (SoC) powerline communication (PLC) modem. It incorporates Yitran's extremely reliable Physical Layer (PHY), high performance Data Link Layer (DLL) and Yitran Network Layer (Y-Net) protocol.

An integrated microcontroller with extended 8051 core, 256KB Flash memory, 16KB RAM and 24 general purpose I/Os implements the protocol stack and offers the required flexibility to implement various protocols and applications. The microcontroller's UART interface provides the connection to an external Host and application controller. The I²C interface connects an optional external EEPROM for configuration parameter storage.

The IT700 modem core uses Yitran's patented Differential Code Shift Keying (DCSK) advanced spread spectrum modulation technique. DCSK enables extremely robust communication over existing electrical wiring with data rates up to 7.5Kbps. In addition to the inherent interference immunity provided by DCSK modulation, the device utilizes several mechanisms for enhanced communication robustness, such as a patented forward short-block soft-decoding error-correction algorithm and special synchronization algorithms.

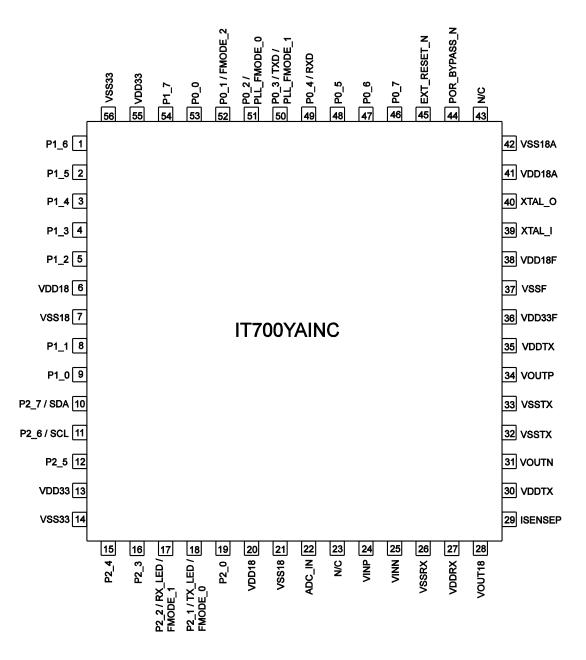
The integrated Analog Frontend provides differential inputs and line driver outputs to connect via an external line filter and coupler to the power transmission lines. An integrated Phase Locked Loop Circuit allows the operation of the IT700 with a choice of different crystal oscillators. An integrated Power On Reset (POR) circuitry eliminates the need for any external reset components and provides an autonomous, safe power-up and power-down reset to the chip. The integrated 1.8V voltage regulator allows the IT700 to operate from a single 3.3V supply voltage.

The IT700 complies with worldwide regulations (FCC part 15, ARIB and CENELEC bands) and is an ideal solution for a variety of "No New Wires" narrowband PLC applications.

The IT700 will be available in two versions:

The **Protocol Controller Architecture** version has Yitran's Y-Net network layer protocol (layer 3) pre-programmed into the 8051 microcontroller's Flash memory. A UART interface and simple command language provide seamless connection to an external Host controller and simplify application development. In this version you have no access to the microcontroller's unused memory space, peripheral functions and general purpose I/Os.

The **Open Solution Architecture** version allows you to utilize the IT700 microcontroller's peripheral functions, such as timers, interrupts, communication interfaces, A/D, spare memory resources and general-purpose I/Os to implement your own application code, thereby eliminating the requirement for an external host controller. An Application Programming Interface (API) enables the easy integration of your application code with Yitran's Network Layer code.


This advanced information document covers the Protocol Controller Architecture version only; release of the Open Solution Architecture version is scheduled for a future date.

3. Pinout and Pin Description

3.1 Pinout

The following figure shows the IT700 QFN56 lead-free package pinout:

3.2 Pin Description

The functionality of the IT700 pins is described in Table 2. The pin type format used is xx/yy and the options for the xx and yy fields are shown in the following table:

Table 1: Pin Type Syntax

XX	Description	уу	Description
Ι	Input	PD	Internal Pull-Down
0	Output	PU	Internal Pull-UP
IO	Input or Output	А	Analog

Pin #	Pin Name	Туре	Description	
1 111 #	Alternate	Type	Description	
	Functions			
1	P1_6		General-purpose input/output	
1	INT1	IO/PU	External Interrupt input	
2	P1_5		General-purpose input/output	
2	INT0	IO/PU	External Interrupt input	
3	P1_4		General-purpose input/output	
5	CAPTURE0	IO/PU	Timer T2 Capture/Compare input 0	
	INT3	10/10	External Interrupt input	
4	P1_3		General-purpose input/output	
4	INT2	IO/PU	External Interrupt input	
5	P1_2		General-purpose input/output	
5	T2EX	IO/PU	Timer T2 External event reload input	
	INT6	10/10	External Interrupt input	
6	VDD18	Power	+1.8V supply voltage: must be connected to VOUT18 (pin 28)	
7	VSS18	Power	Digital Ground	
8	P1_1	10001	General-purpose input/output	
Ũ	T2	IO/PU	Timer T2 external clock or gated clock input	
	INT5		External Interrupt input	
9	P1 0		General-purpose input/output	
	TJEX	IO/PU	Timer T3 External event reload input	
10	P2 7		General-purpose input/output	
	SDA	IO/PU	I ² C Serial Data (SDA)	
11	P2_6	IO/PU	General-purpose input/output	
	SCL	10/PU	I ² C Serial Clock Line (SCL)	
12	P2_5	IO/PU	General-purpose input/output	
	SCK	10/PU	SPI Master Clock Output (SCK)	
13	VDD33	Power	+3.3V supply voltage	
14	VSS33	Power	Digital Ground	

Table 2: IT700 Pin Description

Pin #	Pin Name	Туре	Description	
	Alternate	~ 1	L L	
	Functions			
15	P2_4	IO/PU	General-purpose input/output	
15	¹³ MOSI		SPI Master Data Output (MOSI)	
16	P2_3	IO/PU	General-purpose input/output	
10	MISO	10/10	SPI Master Data Input (MISO)	
	P2_2		General-purpose output	
17	RX_LED	O/PU	Receive LED	
	FMODE_1		Functional Mode select, Bit 1 (sampled during Reset)	
10	P2_1	O/PU	General-purpose output	
18	TX_LED		Transmit LED	
	FMODE_0		Functional Mode select, Bit 0 (sampled during Reset)	
19	P2_0 CAPTURE1	IO/PU	General-purpose input/output	
20	VDD18	Power	Timer T2 Capture/Compare input 1 +1.8V supply voltage, must be connected to VOUT18 (pin 28)	
20	VDD18 VSS18	Power	Digital Ground	
21	ADC_IN	I/A	Analog to Digital Converter Input	
22	N/C	I	Not Connected	
23	VINP	I/A	Positive Differential Input from powerline coupler/filter	
25	VINN	I/A	Negative Differential Input from powerline coupler/filter	
26	VSSRX	Power	Analog Ground	
27	VDDRX	Power	+3.3V Analog Power Supply	
28	VOUT18	Power	+1.8V Voltage Regulator Output	
29	ISENSEP	I/A	Current Sense Input	
30	VDDTX	Power	+3.3V Analog Power Supply	
31	VOUTN	O/A	Negative Differential Line Driver Output to powerline coupler	
32	VSSTX	Power	Analog Ground	
33	VSSTX	Power	Analog Ground	
34	VOUTP	O/A	Positive Differential Line Driver Output to powerline coupler	
35	VDDTX	Power	+3.3V Analog Power Supply	
36	VDD33F	Power	+3.3V Digital Power Supply	
37	VSSF	Power	Digital Ground	
38	VDD18F	Power	+1.8V supply voltage: must be connected to VOUT18 (pin 28)	
39	XTAL_I	Ι	External Oscillator Input	
40	XTAL_O	IO	External Oscillator Output	
41	VDD18A	Power	+1.8V analog supply voltage: must be connected to VOUT18 (pin 28)	
42	VSS18A	Power	Analog Ground	
43	N/C	I/PU	Not Connected	
44	POR_BYPASS_N	I/PU	Power On Reset (POR) Bypass, active low	
45	EXT_RESET_N	I/PU	External reset, active low. Only required if POR is disabled	
	P0_7		General-purpose input	
46	TMS	I/PU	Microcontroller JTAG Debug interface TMS signal	
	TMS_FLASH		Flash JTAG programming interface TMS signal	

Pin #	Pin Name Alternate	Туре	Description
	Functions		
17	P0_6	I (DI I	General-purpose input
47	TDI TDI FLASH	I/PU	Microcontroller JTAG Debug interface TDI signal Flash JTAG programming interface TDI signal
	P0_5		General-purpose input
48	TCK	I/PU	Microcontroller JTAG Debug interface TCK signal
	TCK_FLASH		Flash JTAG programming interface TCK signal
49	P0_4	I/PU	General-purpose input
49	RXD	I/I U	UART Receive Data In (RXD)
	P0_3		General-purpose output
50	TXD	O/PU	UART Transmit Data Out (TXD)
	PLL_FMODE_1		PLL Mode select, Bit 1 (sampled during Reset)
	P0_2		General-purpose output
51	PLL_FMODE_0	O/PU	PLL Mode select, Bit 0 (sampled during Reset)
51	TDO	0/10	Microcontroller JTAG Debug interface TDO signal
	TDO_FLASH		Flash JTAG programming interface TDO signal
	P0_1		General-purpose output
52	FMODE_2	O/PU	Functional Mode select, Bit 2 (sampled during Reset)
0-	RTCK	0/1 0	Microcontroller JTAG Debug interface RTCK signal
	TOEN_FLASH		Flash JTAG programming interface TOEN signal
	P0_0	10 777	General-purpose input/output
53	T3	IO/PU	Timer T3 external clock or gated clock input
	TRST_FLASH		Flash JTAG programming interface TRST signal
	P1_7		General-purpose input/output
54	AdcExtTrig	IO/PU	ADC External Trigger input
	INT4	D	External Interrupt input
55	VDD33	Power	+3.3V Supply voltage
56	VSS33	Power	Digital Ground

4. Electrical Characteristics

4.1 Absolute Maximum Operating Conditions

These are stress ratings only: functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Stresses beyond those listed under "Absolute Maximum Operating Conditions" may cause permanent damage to the device. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Power supply voltage, VDD33 (max)	3.6V
Power supply voltage, VDD33 (min)	0.3V
Input voltage, VI (max)	VDD+0.3V, max. 3.6V
Input voltage, VI (min)	
Storage temperature range	$-40^{\circ}C \text{ to } +125^{\circ}C$

4.2 Recommended Operating Conditions

Rating	Symbol	Minimum	Nominal	Maximum	Unit
Power Supply Voltage	VDD33	3.0	3.3	3.6	V
Power Supply Voltage	VDD18	Connect to chip	's 1.8V voltage	regulator output	V
			VOUT18		
Total Maximum Supply	IDD _{33max}	no load on		500	mA DC
Current		digital outputs			
Average Power Consumption	IDD _{33avg}	During	75		mA DC
)	Reception			
High Level Input Voltage	V _{IH}	2		VDD+0.3 / 3.6	V
Low Level Input Voltage	V _{IL}	0		0.8	V
High Level Output Voltage ⁽¹⁾	V _{OH}	at I _{DOmax}		3.5	V
Low Level Output Voltage ⁽¹⁾	V _{OL}	at I _{DOmax}		0.4	V
Source and Sink Current ⁽²⁾	I _{DO}	Max. 5 I/Os at		8	mA
		same time			
Internal Operating Frequency	Fosc		46.08		MHz
Crystal Overall Accuracy			120		PPM
Operating Temperature Range	T_0	-40	25	+85	°C

Note: ⁽¹⁾ At maximum sink/source current ⁽²⁾ Digital I/O pins, max. 5 outputs sink/source at the same time

5. Chip Configuration

5.1 Phase Locked Loop (PLL)

The IT700 has an integrated Phase Locked Loop (PLL) circuit that allows operating the device with different input clock frequencies.

The PLL operating mode is determined by sampling pins PLL_FMODE_1 (P0_3) and PLL_FMODE_0 (P0_2) during Reset. Table 3 shows the different PLL configurations and the required crystal input clock frequency for each mode.

PLL_FMODE_1 (P0_3)	PLL_FMODE_0 (P0_2)	PLL state	Crystal Frequency [MHz]	PLL OUT [MHz]
1	1	active	5.12	46.08
0	1	active	15.36	46.08
1	0	active	15.36	46.08
0	0	Power down	46.08	Bypassed

Table 3: PLL Mode Selection

5.2 IT700 Operating Modes

The IT700 chip operating mode is determined by sampling pins FMODE_0 (P2_1), FMODE_1 (P2_2) and FMODE_2 (P0_1) during Reset. Those pins are internally pulled high, which defaults to selecting the Protocol Controller Architecture mode. Do **not** pull these pins low during Reset.

Table 4: IT700 Operating Mode Selection				
2	FMODE_1	FMODE_0	Mod	

FMODE_2	FMODE_1	FMODE_0	Mode
(P0_2)	(P2_2)	(P2_1)	
1	1	1	Protocol Controller Architecture Mode

6. Host Interface

The IT700 Protocol Controller Architecture version comes with Yitran's Network layer pre-programmed into the integrated 8051 microcontroller's Flash memory. In this mode the device operates as a "closed" PLC modem chip. An external host and application controller is required to implement your application layer functionality. The host controller connects to the IT700 through a UART interface (RXD and TXD pins) with 38400 bps, 8 data bits, odd parity, 1 stop bit an no flow control.

Figure 3 shows the typical schematic connections for the IT700 Protocol Controller Architecture.

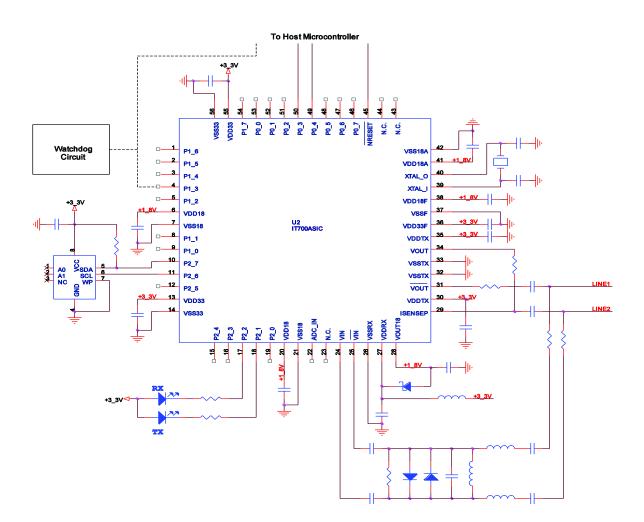
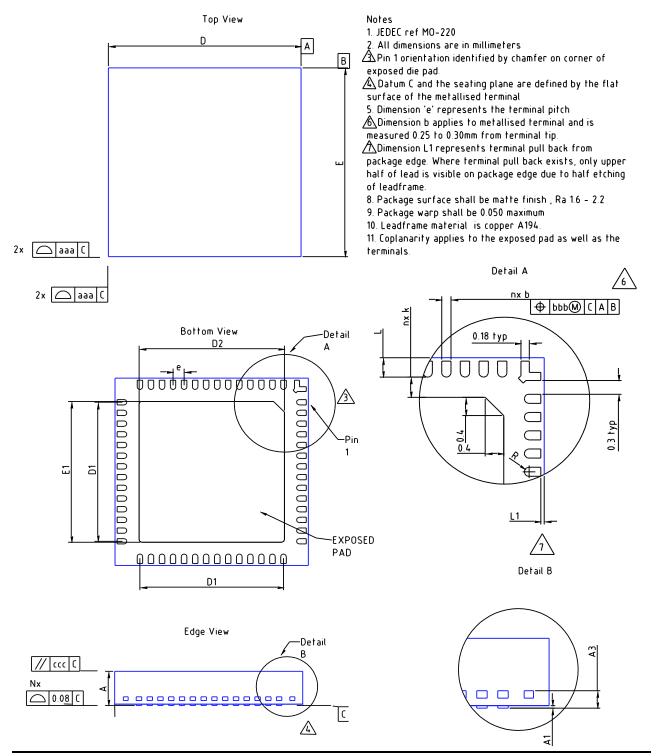
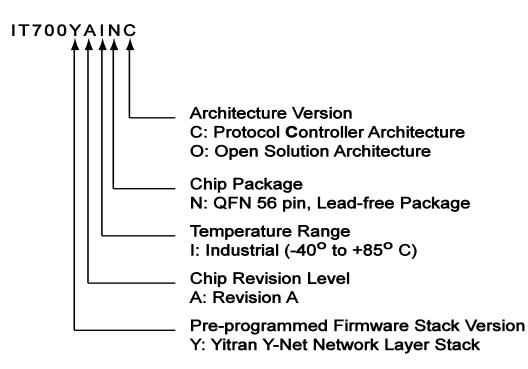



Figure 3: Typical Application Circuit, IT700 Protocol Controller Architecture

7. Mechanical Dimensions

7.1 Package Tolerances


	Common Dimensions (mm)			
Symbol	Min	Nom	Max	
Α	0.85	0.9	1	
A1	0	0.02	0.05	
A3		.20 ref		
D	6.9	7	7.1	
D1		5.2		
D2	5.2	5.3	5.4	
Е	6.9	7	7.1	
E1		5.2		
E2	5.2	5.3	5.4	
L	0.3	0.4	0.5	
L1			0.1	
b	0.15	0.2	0.25	
Ν		56		
e		0.4		
k	0.2			
R	b min/2			
Т		0.15		

Tolerances for Form & Position (mm)			
Symbol	Value		
aaa	0	.1	
bbb	0.0)7	
ссс	0	.1	

8. Ordering Information

The IT700 part naming convention for ordering parts is shown below:

Document Control

Rev	Date	Description
1.0		
1.1		
1.2		
1.3	1 March 2009	Operating Conditions section updated IT700 Protocol Controller Architecture figure updated IT700 Pin Description table updated
1.4	September 2014	Document format change
1.5	November 2016	Notice update

Important Notice

All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. Yitran Technologies Ltd. ("Yitran") reserves the right to make changes to its products, except for encryption and authentication algorithms, or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.

Yitran warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Yitran's standard warranty. Testing and other quality control techniques are utilized to the extent Yitran deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). Yitran's PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE–SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF Yitran's PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, the customer, to minimize inherent or procedural hazards, must provide adequate design and operating safeguards.

Yitran assumes no liability for applications assistance or customer product design. Yitran does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of Yitran covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Yitran's publication of information regarding any third party's products or services does not constitute Yitran's approval, warranty or endorsement thereof.

Yitran Tecnologies Ltd. 6 HaGoren St. Omer 8496500 ISRAEL

T +972 8 958 0282 F +972 8 958 0281 yitran@yitran.com